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Abstract. Thermodynamic and transport properties of high temperature equilibrium air plasmas have
been calculated in a wide pressure (0.01 < 100 atm) and temperature range (50 < 60000 K). The results
have been obtained by using a self-consistent approach for the thermodynamic properties and higher order
approximation of the Chapman-Enskog method for the transport coefficients. Debye-Hiikel corrections have
been considered in the thermodynamic properties while collision integrals of charge-charge interactions have
been obtained by using a screened Coulomb potential. Calculated values have been fitted by closed forms
ready to be inserted in fluid dynamic codes.

PACS. 52.25.Fi Transport properties — 52.25.Kn Thermodynamics of plasmas — 51.20.4+d Viscosity,
diffusion, and thermal conductivity

1 Symbols Gpu  Debye-Hiickel correction to Gibbs
free energy
ao Bohr radius h Planck constant
a polarizability H mixture enthalpy
Cp mixture constant pressure specific heat Hpr  Debye-Hiickel correction to enthalpy
Crs stoichiometric coefficients of the sth species n viscosity
in the rth reaction k Boltzmann constant
Xs molar fraction of sth species KF equilibrium constant of rth reaction
Dij binary diffusion coefficients for pressure
Apg  Debye-Hiickel correction i rotational quantum number
A&, energy cutoff for sth species Zs effective atomic ionization potential
A€rs  Fermi energy cutoff for sth species of sth species
AEcs  Griem energy cutoff for sth species Zos unperturbed atomic ionization potential
e Neper number of sth species
& mixture energy A total thermal conductivity
Es total mean energy of sth species AD Debye length
gr translational mean energy of sth species M mean molar mass
gint internal mean energy of sth species ms mass of sth species
Epu Debye-Hiickel correction to energy n total number density of the plasma
E€si energy of the ith level of sth species N number of internal levels of sth species
€0 vacuum dielectric constant N total particle density
F mixture Helmoltz free energy N particle density of sth species
Fpu  Debye-Hiickel correction to Helmoltz free energy P total pressure
Gsi statistical weight of the ith level of Ppu  Debye-Hiickel correction to pressure
sth species Ps partial pressure of sth species
gt statistical weight of molecular electronic state Qs total partition function of sth species
g mixture Gibbs free energy i translational partition function of sth species
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=

internal partition function of sth species

» =

Qe electron charge

p mass density of the plasma

R ideal gas constant

Rs name of the sth species

o electric conductivity

S specific entropy

s species index

S mixture entropy

Spu  Debye-Hiickel correction to entropy
T temperature

v vibrational quantum number

Zs charge number of sth species
Qi(]l.’s) collision integral of (I, s) type for

interactions between species ¢ and j

2 Introduction

Over the last decades a substantial growth in industrial
applications of plasmas has occurred [1-9]. In particular,
cutting, welding, spraying, metallurgy, waste destruction
and surface treatment need improvements in controlling
plasma processing and in understanding of flow structures
and heat, mass and momentum transfer between plasma
and materials. Consequently, thermodynamic properties
and transport coefficients of plasmas are indispensable in-
put data for accurate numerical modeling. In many ap-
plications it’s possible to perform such calculations as-
suming local thermodynamic equilibrium describing the
plasma with two independent state variables such as pres-
sure and temperature. A key point is the calculation of
equilibrium plasma composition necessary to determine
thermodynamic and transport properties of mixtures; at
this purpose a new approach has been used, based on a hi-
erarchical solution of single reaction equilibria [10-13]. A
relevant aspect in the calculation of thermodynamic prop-
erties and gas composition is the cut-off criteria used to
truncate the atomic partition function, based on the pres-
sure (Fermi criterion, see [14]) or on the plasma potential
and electron density (Griem criterion [15]). In this paper,
we use a combination of these criteria to have adequate
cut-off for all the temperatures and pressures considered.

Transport properties are calculated using the
Chapman-Enskog approximation, with a finite Sonine
polynomial expansion of the Boltzmann equation up
to the third order for electrons contribution to the
translational thermal conductivity and for the electrical
conductivity. Due to the mass difference, the heavy
particles and electron Boltzmann equations are decou-
pled. As a consequence, the transport properties of free
electrons and heavy-species are calculated independently,
following the method of Devoto [16]. The collision
integrals, depending on the intermolecular potentials,
are continuously updated [17] to improve the calculation
of transport coefficients. In this paper we have used
the collision integrals reported in [17] except for the
charge-charge interaction. In this case we improve the
calculations updating the Liboff collision integrals [18]
with the more accurate model proposed by Mason [19,20]
which considers screened Coulomb potential accounting

for a Debye length calculated only from the electron
number density.

In this paper we improve the results presented in refer-
ence [21] for P = 1 atm extending the pressure and tem-
perature range. The calculation of equilibrium composi-
tions and thermodynamic properties has been improved
considering also non ideal gas effects following Debye-
Hiickel theory [22].

For the air mixture, the following species were consid-
ered: Ny, NJ, N, Nt N2+ N3+ N4+ 0,,05,0,,0,0,
O+, 0%t, 03*, 0%, NO, NO* and e~. Comparisons with
experimental values of Asinovsky et al. [23] and Schreiber
et al. [24], with theoretical values obtained by Capitelli
et al. [21], Murphy [25], Hansen [26], Nicolet et al. [27]
with the tables of Yos [28], all of these performed at atmo-
spheric pressure, and with Bacri et al. [29,30] are reported.
Analytical expressions of molar fractions, thermodynamic
properties and transport coefficients have been reported
for pressures varying from 0.01—100 atm and in the tem-
perature range 50—60 000 K.

3 Method of calculation

The results here presented are obtained in three steps: in
the first step the calculation of plasma composition has
been performed varying temperature and pressure, in the
second the knowledge of the composition has permitted
the determination of thermodynamic properties and in the
last step transport properties have been calculated using
the Chapman-Enskog approximation.

Chemical equilibrium compositions and internal en-
ergy are the input for the calculation of transport co-
efficients. A new approach has been used for accurate
evaluation of equilibrium compositions [10,11] taking into
account Debye-Hiickel corrections. Transport coefficients
are calculated using the high order approximation of the
Chapman-Enskog method [31,32]. A brief description of
the model is given in the following.

3.1 Thermodynamics

To calculate thermodynamic properties of a plasma, the
knowledge of partition functions, their derivatives, and the
concentrations of various species present in the plasma is
a prerequisite. The partition functions can be expressed as
the product of the translational and internal contributions

Q, = Qo (1)

and, as a consequence, the mean energy is given by the
sum of the two contributions

=&+ &, (2)

The translational partition function and the associated
energy are given by [22,33]
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g — ng (4)

while the internal partition function and the internal en-
ergy are calculated as the sum over atomic or molecular

levels n
Q" =Y guexp (— ) (5)
i=0
int 1 & Esi
Mt = @ ; Jsi€si €XP (—k—T) (6)

For air molecules, ns has been restricted to the bound
electronic states originating by the spin and angular mo-
mentum coupling of valence electrons. Each bound state
supports a finite number of ro-vibrational levels as de-
scribed in references [33,34]. The partition function is cal-
culated as

y Vmaz:,i max,iv

s J ..
0r'=3 % 3 swew(-5F) @
[ v 7

The statistical weight of a (ivj) state depends only on the
electronic and rotational contributions

Gsivi = 9525 + 1) (8)

The calculation of energy of ro-vibrational states is based
on the 2D polynomial expansion on v + % and j(j 4+ 1) as
reported on [33,35,36].

For atomic species, ng is infinite, making the atomic in-
ternal partition functions divergent [37], as a consequence
of the rapid growing of the statistical weight (i.e. for hy-
drogen atoms, g, o n?, being n the principal quantum
number). This behavior is true only for isolated atoms,
while interactions with other particles limit the number
of levels introducing the energy cutoff AE; which modifies
the unperturbed ionization Zys potential as

T, = Tos — AE,. (9)

In the previous paper [21], the cutoff was fixed (A&, =
500 cm~!) using tables from reference [38]. In the present
paper, we determine the cutoff self-consistently with the
composition. At this purpose, the number of levels should
be large enough to make effective the contribution of the
cutoff, while in available databases [39,40] the levels re-
ported are not sufficient to fulfill this condition. There-
fore the atomic data in [39] have been extended by Ritz-
Rydberg series (for detail see [33,34]).

To determine the self-consistent cutoff, two different
approaches have been considered: the Fermi criterion
[41,42], which compares the mean distance with the

atomic radius
ao

zs + 1
under the hypothesis of hydrogenoid levels and for high

energy states and the Griem criterion [15] which considers
the contribution of plasma potential

Alps = N3 (10)

zs+ 1

Alqs =
€a 4megAp

(11)

where \p is the Debye length

Ay — EokT
PV NEE, 2

The cutoff selected is the largest between the Fermi and
Griem values

(12)

A& = max (AEps, Algs). (13)
It must be noted that the Griem cutoff depends on the
plasma composition making necessary a self-consistent so-
lution of the problem.

The formation of the plasma potential induces in the
system real gas properties. The corrections to the perfect
gas behavior have been determined in the framework of
the Debye-Hiickel theory [22]

kT
Apa = m (14)
Ppay = —Apgy (15)
Fpag = 2VApy (16)
3
Gpu =Epu = 5.7:DH (17)
Hpu =2Fpu (18)
1
Spr = 5}—DH~ (19)

It must be noted that there is also a correction to the
pressure leading to the result

P=> P.+Ppu (20)
where P; follows the perfect gas role
Ps = NET. (21)

The partial pressures are calculated solving the equilib-
rium equation system. Given a reaction

Z crsRs =0

the sum running over all the species, where the reactants
have negative coeflicients, the products have positive coef-
ficients and species not involved in the reaction have null
coefficients, its equilibrium equation can be written as

kP =][Pe.

In a mixture, there are many of such reactions and the
equilibrium composition is obtained solving the system
of nonlinear coupled equilibrium equations. The determi-
nation of equilibrium composition is a complex problem
and many algorithms have been developed. We have ap-
plied a new approach [10,11] which consists in solving
one equilibrium equation at a time. The method is based
on the idea of Villars [12,13] soon abandoned because

(22)

(23)
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the method was not easily automatized. The reaction or-
dering is chosen determining, at each step, which reaction
is farther from equilibrium, defining a reaction distance.
The algorithm is very fast and stable and details can be
found in [10,11]. The method finds in very few steps the
concentration of principal species, refining the solution of
minority species in a second stage. Once each reaction is
solved, Debye length and cutoffs are updated. The cut-
off converges faster than the mixture composition, being
related to the concentration of the majority species. In hi-
erarchical methods, the concept of accuracy differs com-
pletely respect to global minimization approaches, where
the tolerance is the maximum percentage error for each
concentration. In fact the concentrations precision is given
by the machine error for all the species except for those
with molar fraction below a given tolerance which are af-
fected by large errors. Details about error analysis are re-
ported in [11].

The thermodynamic properties (per unit volume) of
the mixture are calculated using the traditional transfor-
mation equation from energy or partition function

F=—kTY N.InQ.+ Fpu (24)

~ > Ni&i+Epu (25)
H=¢E +s7> (26)
G=F+P (27)
s=-27 (28)

It should be noted that virial corrections have been ne-
glected in our calculations. Different works [43,44] have
shown that the virial corrections to thermodynamic prop-
erties are very small (within few percent) for 7' > 2000 K
up to 1000 atm. Virial corrections can be however impor-
tant for very low temperatures (" < 300 K) and very
high pressures (P ~ 100 atm) [45] i.e. far from plasma
conditions.

3.2 Collision integrals of air species

In the present paper a recent compilation of collision in-
tegrals obtained by Capitelli et al. [17] has been used in
order to calculate transport properties, except for interac-
tions between charged species. For these interactions, the
model proposed by Mason [19,20] has been applied. Mason
approach considers screened Coulomb potential account-
ing for a Debye length calculated only from the electron
number density.

Transport coefficients are strongly dependent on the
collision integrals, obtained averaging over a Maxwellian
distribution the collision cross-sections for pairs of species.
The collision integrals for interactions between species
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i and j are defined by [31,32]

Ls kT [* s !
08 = \/27%]/ exp(—72)EHQY (i) di

(30)
where ;5 is the reduced mass, v;; the reduced initial rel-

ative speed of the colliding molecules and Qg;) the gas-
kinetic cross-sections. These quantities are defined as fol-
lows

Nzg

Vij =\| gt (31)
! oo
Q( ) (i) = 277/ (1 — cos' x) bdb (32)
0

where u;; is the initial relative velocity of two molecules
in a binary encounter, b the impact parameter and x the
deflection angle, which is a function of b, ;; and the in-
termolecular potential V(r), where r is the separation be-
tween the interacting particles. Therefore the calculation

of Qf;’s) reduces to the knowledge of V (r).

In order to calculate collision integrals corresponding
to interactions between neutral species an exponential re-
pulsive form has been used for T > 2000 K

V(r) = poexp(—r/p) (33)
where p and g are parameters obtained fitting the exper-
imental studies of Leonas [46] for the interactions No—Ng,
N3-N, N3-O3, No-O, No-NO, N-O2, N-NO, O3-02, Oo—
0, 02-NO, O-NO, NO-NO and of Riabov [47] for N-O.
For the interactions No—Ns, No—N, No—Os, No—O, No-NO,
N-O3, N-O, N-NO, 02-03, O2-0, O2-NO, O-NO, NO—-
NO and for T' < 1000 K a Lennard-Jones potential has
been considered

o= [(9) ()]

where V; is the depth of the potential well and o the
collision diameter for the interactions. The parameters V;
and o are tabulated in [17].

For the interaction N-N an average over 4 potential
curves (bound and repulsive) spectroscopically denoted by
13,35, 5%, 7% and over 18 different potentials in the case
of O—O have been considered. The statistical weights to
be used in the averages are equal to the spin multiplicity
for X' states and two times the spin multiplicity for IT,
A, ... states. Bound states have been treated according to
a Morse potential

(34)

V(r) = a(r—re)l} (35)
where 7., Vo and a, tabulated in [17], are respectively
the equilibrium bond distance, the depth of the poten-
tial well and a constant value related to the width of the
well. The repulsive ones have been treated according to
equation (33). For T' < 1000 K a Lennard-Jones potential
has been used [48].

Vo{exp[—2a(r —re)] — 2exp[—
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Table 1. Coeflicients to calculate collision integrals between charged particles by using equation (38).

Ce Cs C4

D _68907164e-7  3.9962681e-5  —9.1726603¢-4
QWD 4 5117138e-7  —1.8071172e-5  1.0779533e-4

QWD _57997070e-7  3.2934374e-5  —T7.4777692¢-4
QW2 185500987  —2.9457724e-6 —2.0524258e-4
QW3 _43210796e-7  2.5069749e-5  —5.7744446e-4
QW3 4 9754626e-8  9.4148622¢-6  —4.3259106e-4
@2 _73601073e-7  4.6128777¢-5  —1.1591771e-3
@2 37088651e-7  —1.2368963¢-5 —4.3287839%¢-5
0E3)*a  _099732643e-7  5.8539823e-5  —1.3501321e-3
@3 13746615e-7  4.8295307e-8  —2.7706436e-4

Cc3 C2 C1 Co
1.1119743e-2 —8.6680553e-2 —1.4201786 —7.9206301e-1
4.6897082e-3 —9.5164062e-2 —1.1924897 —1.3985613
8.9360011e-3 —6.8914896e-2 —1.5259733 —1.4388180
7.2736296e-3 —9.6108844e-2 —1.3028643 —1.8990738
7.0875826e-3 —5.7252758e-2 —1.5798792 —1.9240126
8.7680260e-3 —9.3477251e-2 —1.3767661 —2.2877081
1.5291388e-2 —1.2062283e-1 —1.3061990 —8.1198723e-1
6.4520586e-3 —1.0180688e-1 —1.2242632 —1.1096929
1.5966952e-2 —1.1181856e-1 —1.3939960 —1.2004374
8.0837639e-3 —1.0007200e-1 —1.2999675 —1.4700797

In the case of ion-neutral non-resonant interactions,
collision integrals have been calculated by using a polariz-
ability model which assume the following closed form [17]

QD) = g2 (%)1/2 (36)

where a;; is a coefficient depending on the order (i, ) of
collision integrals, z is the ion charge and « is the po-
larizability [49]. For NT-O and N-O interactions, colli-
sion integrals calculated by Stallcop and Partridge have
been used [50,51]. In the case of ion-neutral resonant col-
lisions (N§ Nz, N*-N, OF-04, 0;-0,, O-0~, O-OT,
NO-NO™) diffusion and viscosity type collision integrals
have been distinguished. For NT-N and O-O™, interac-
tions, the viscosity-type collision integrals have been cal-
culated using Morse and repulsive potentials [52] and con-
sidering that the interactions occur through 12 potential
curves (3455, ; 2’4’6173;3’6) in the case of N*-N, while
through 24 potential curves [53] for O-O~. In the case of
NO-NO™T, Nf Ny, OF 03, O; O3 a polarizability model
has been used.

The collision integrals diffusion type for NT—N and O—
O™ interactions have been obtained considering that the
diffusion cross section QY is dominated at high tempera-
ture by charge transfer [54,55] and at low temperature by
the polarizability. The dependence of the charge-transfer
cross section on relative velocity v is given by

QW = [C - Dlog (v))* (37)
where C' and D have been calculated from experimental
measurements [54,55]. Diffusion type collision integrals for
NNy, 0F-02, 05 -0z, O-O~, NO-NO™ interactions
have been calculated simply by charge transfer cross sec-
tions [55,56].

Collision integrals for e"—Ny and e™—O5 interactions
have been calculated numerically by using the momentum
transfer cross section reported by Phelps and Pitchford
[57,58] and by referring to the works of Chandra et al. [59]
and Shyn et al. [60]. In the case of e”—N, the momen-
tum transfer cross section selected is the one reported
by Capitelli and Devoto [52] corrected by referring to
the work of Thompson [61], while for the calculation of
e~ -0 collision integrals, the Q") and Q® evaluated by

Thomas et al. [62] and the differential cross sections of
Blaha et al. [63] have been used.

For minor interactions, N-N"t Ny-N"*, O-O"t, Oy
O™, OF-Ny, NT-0,, NI-NO, OF -NO, Ot-NO, N*-
NO a polarizability model (Eq. (36)) for both diffusion
and viscosity-type collision integrals has been used.

Finally, accurate collision integrals for interactions
between charged particles have been obtained by using
the model proposed by Mason [19,20], where screened
Coulomb potential accounting for a Debye length calcu-
lated only from the electron number density has been
considered. The same assumption has been used by
Devoto [64] and Murphy [65], while more recently André
et al. [66] calculated the Debye length also allowing the
screening effect of ions. Our choice can have no-negligible
effects at very high temperature, when multi-charged ions
become the predominant species.

Relevant differences in transport properties have
been observed respect to results obtained by using
Liboff [18] cross sections. The numerical results of Mason
et al. [19,20] have been fitted by the following equations:

6
log 2 = 3" ¢; [log (T")}! (38)
=0

where T™ represents the ratio of the Debye shielding dis-
tance to the particle diameter ¢2/kT

AD
—
(g2/kT)

and ¢; are reported in Table 1 for repulsive (r) and at-
tractive (a) reduced collision integrals in standard dimen-
sionless notation [31]. The set of collision integrals used

in this paper is in substantial agreement with the recent
results reported by [67].

(39)

3.3 Transport properties

Transport properties have been calculated using the
Chapman-Enskog method, with a finite Sonine polynomial
expansion of the Boltzmann equation. Since electron mass
is smaller than that of heavy species, the heavy-species
Boltzmann equation is decoupled from that of electrons.
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Therefore electron and heavy-species transport proper-
ties are calculated independently following the method of
Devoto [16].

The derivation of transport coefficients to a first-order

approximation requires the calculation of QZ(; D and Qi(f’Q)

while .Qz(jl 2 and QZ(; ) are required to extend the calcula-
tion to a second-order approximation. For the calculation
of the electrical conductivity and the electron contribution
to the translational thermal conductivity QZ(JI ’4), Qz(]l '5)
Qi(?’s) and !252’4) for interactions between electrons and
ot}]ler charged particles are also required.

The viscosity coeflicient is calculated using the first-
order approximation proposed by Hirschfelder et al. [31].
The contribution of the electrons to the viscosity is negli-
gible, consequently, can be approximated in the following
manner

)

N = nn + e = (40)

h referring to heavy particles and e to the electrons.
The total thermal conductivity of plasma is calculated
as the sum of three contributions:

A= )\tr + )\int + )\7' (41)
in which A is the translational thermal conductivity,
Aint the internal thermal conductivity and A, the reac-
tive contribution to the total thermal conductivity. The
translational contribution is calculated considering a non-
reacting plasma of spherical molecules without internal de-
grees of freedom. Removing this hypothesis internal and
reactive contributions must be added. As for the coeffi-
cient of viscosity, the translational thermal conductivity
Aw- can be considered as the sum of two contributions,
due to the heavy particles and to the electrons [16]

Atr = An + Ae. (42)
The contributions of the heavy and electron components
to the translational thermal conductivity are calculated
respectively by means of the second and third order ap-
proximations. In fact, the separation between the solutions
of the electron and heavy distribution functions allows two
different levels of approximations:

Ar =M (2) + Ae (3).

In LTE plasma, the thermal conductivity may be consid-
erably higher than in frozen or non-reacting mixtures. In
fact, dissociation and ionization reactions in plasma in-
crease the thermal conductivity and the heat transported
as chemical enthalpy of molecules, which diffuse cause the
existence of concentration gradients. In the present work,
the method of Butler and Brokaw [68] has been used to cal-
culate the contribution to the total thermal conductivity.
Between the v = 19 species R; present in the air plasma,
1 = 16 are combinations of a base composed of 3 inde-
pendent species. The simplest base, composed of atomic
species (N, O) and electrons, cannot be used in the overall
temperature range because numerical problems arise when
one or more concentrations become too small. For this rea-
son the base is generated automatically selecting species

(43)
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with higher concentrations. At low temperature, when the
ionization is too weak the dimension of the base reduces
to 2 neutral elements. Each species is written as a linear
combination (a chemical reaction) of the base species:

v
Z ninj Z:].,,/L

J=p+1

R, = (44)

The reactive thermal conductivity has been calculated
with the following formula [68]:

1 v
)\’l“ = RT2 ZAJAHJ
j=1

where A; are the solutions of a linear system and AH; =
n

> niH; — H; is the heat of the ith reaction. In the
Jj=v+1
calculation the species with y; very small (i.e. y; < 10720)
are excluded.

The presence of internal degrees of freedom affects
the heat flux vector. The exact expression for the coef-
ficient of thermal conductivity depends on the transition
probabilities for the transfer of energy among the degrees
of freedom of the molecules. In this work, the assump-
tion of Eucken [69] has been used, applicable when the
rate of transfer is sufficiently fast and the distribution of
molecules among the various states of freedom is essen-
tially the equilibrium distribution. The simplified expres-
sion of Eucken has been used

(45)

Cp.i i
pant, j
1 v Xj%

R DV o
& PD; (1)
in which ¢p in¢, ; is the internal molar specific heat at con-
stant pressure of the jth species and D;; (1) is the first
approximation to the coefficient of diffusion of a binary
mixture. The use of this equation for the calculation of
the transport of the internal energy (electronic) of atomic
species is open to questions since the electronically excited
states present much higher transport cross sections than
the ground state. This point has been recently analyzed by
our group in the case of atomic hydrogen plasmas [70,71].
Unfortunately, the knowledge of transport cross sections
of excited states for air plasma is still scanty, despite the
enormous efforts of scientific community [72-76].

The electric conductivity is calculated using the third
approximation proposed by Devoto [77] to compute the
ordinary diffusion coefficient and neglecting the contribu-
tion of the ions to the current

2 MeMeN
7= pkT

where n and p represent the total number density and
the mass density of the plasma. It should be noted that
we have neglected the contribution of ions to the current
as done in [78] for SFg plasma. This contribution can be
relevant at high pressures and low temperatures, when
the negative ions dominate. This occurs however when
the molar fraction of negative ions is so small that the
electrical conductivity is close to zero.

(46)

Dee (47)
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Fig. 1. Comparison of specific enthalpy at different pressures
(1, 10, 100 atm): present work (full line), constant cut-off
(dashed line), Bacri et al. at 1 atm (O), at 10 atm (%) and
at 100 atm (+).

4 Results

In the paper chemical compositions, thermodynamic and
transport properties of air plasma have been calculated
in the temperature range 50-60000 K and for pressure
varying from 0.01 to 100 atm. Calculated values have been
fitted by analytical functions and fitting coefficients have
been tabulated in Appendix.

Our results have been compared with other numerical
[21,25-30] and experimental [23,24] values and compar-
isons have been made between results obtained consider-
ing constant cut-off and self-consistent cut-off [15].

Thermodynamic properties are in satisfactory agree-
ment with existing data [29,30] while some differences
arise at high pressure (>10 atm) when the constant cut-
off is considered. Sensitivity of mixture thermodynamic
properties to cut-off is much smaller than that of single
species. In fact increasing the cut-off produces two oppo-
site effects: a decrease of internal energy of atomic species
and an increase of ionization energy [79]. At high pressures
ionization degree reduces while, keeping constant cut-off,
the internal energy doesn’t change. As an example, this
effect can be observed in Figure 1 where specific enthalpy
has been reported with self-consistent cut-off (full line)
and constant cut-off (500 cm~!) and compared with the-
oretical results obtained by Bacri et al. [29,30]. On the
other hand self-consistent cut-off produces larger differ-
ences in transport coefficients due to the different chemi-
cal equilibrium compositions obtained, especially at high
pressure as shown in Figures 2, 3 and 4, where compar-
isons between calculated viscosity, electrical conductivity
and thermal conductivity (full line) at different pressures
(0.01, 0.1, 1, 10, 100 atm) have been reported with val-
ues obtained by other authors [29,30] and considering a
constant cut-off (dashed line).

4.5

n [kg m~* s7]

T [K]

x 10°

Fig. 2. Comparison of viscosity coefficient at different pres-
sures (0.01, 0.1, 1, 10, 100 atm): present work (full line), con-
stant cut-off (dashed line), Bacri et al. at 10 atm (%) and at
100 atm (+).

x 10

o 05 1 15 2 25 3
T [K] x 10"

Fig. 3. Comparison of electric conductivity at different pres-

sures (0.01, 0.1, 1, 10, 100 atm): present work (full line), con-

stant cut-off (dashed line), Bacri et al. at 10 atm (%) and at

100 atm (+).

In Figure 5 viscosity coefficient at atmospheric pres-
sure has been compared with theoretical values obtained
by other authors. The agreement is in general satisfactory:
the small differences are due to the different set of colli-
sion integrals for heavy particles used in the calculations.
Figures 6 and 7 show the electric conductivity and the to-
tal thermal conductivity (full lines) at atmospheric pres-
sure compared with theoretical and experimental values
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12

T [K] x 10"

Fig. 4. Total thermal conductivity at different pressures (0.01,
0.1, 1, 10, 100 atm): present work (full line), constant cut-off
(dashed line), Bacri et al. at 10 atm (%) and at 100 atm (+).
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Fig. 5. Viscosity coefficient at atmospheric pressure. Results
obtained in the present work (full line) are compared with those
obtained by Murphy (x) [25], Yos (o) [28], Bacri (O) [30],
Nicolet () [27] and Capitelli et al. (o) [21].

obtained by other authors. It is of particular interest the
differences between the values obtained in the present pa-
per with those obtained by Capitelli et al. [21] where
collision integrals between charged particles have been
calculated following the model of Liboff [18].

4.1 Fitting of transport and thermodynamic properties

Fitting transport coefficients and thermodynamic func-
tions of air mixture in a wide temperature and pressure

The European Physical Journal D

15000

100007

o [Sm™Y

5000¢

Fig. 6. Electric conductivity of air at atmospheric pressure.
Results obtained in the present work (full line) are compared
with those obtained by Murphy (%) [25], Yos (o) [28], Bacri
(O) [30], Nicolet (r>) [27], Capitelli et al. (¢) [21], Asinovsky
et al. (<) [23] and Schreiber et al. (A) [24].

o 05 1 15 2 25 3
T K] x 10°

Fig. 7. Total thermal conductivity of air at atmospheric pres-
sure. Results obtained in the present work (full line) are com-
pared with those obtained by Murphy (x) [25], Yos (o) [28],
Bacri (O) [30], Nicolet () [27], Capitelli et al. (o) [21], Hansen
(V) [26], Asinovsky et al. (<) [23] and Schreiber et al. (A) [24].

range (50—60000 K and 1072 = 10% atm) is a complex
problem due to the non-monotone behavior of the relevant
quantities as a function of temperature. To take into ac-
count the appearance and disappearance of the numerous
species as well as the dependence of the global quantities
on the actual composition, we have chosen the following
functions: sigmoid, Gaussian and some special functions
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listed below:

Gaussian
v(T;e,A) = exp(—¢®), q= TA_ ‘ (48)
Vi (T) =~ (T, Ai).
Sigmoid
o\lied)= eXP(QTT(e(Qp(Q)’ = TA - )
0 (T) = o (Ts s, Ay).
Special functions
€ (Tia,e, A w) = a — coxp(— (T/A)")  (50)
&(T) = {(T @iy Ciy Ag,w5)
o (T;a,w) = (51)
@i (T) = (T; a5, wi) .

The dependence of the fitted data on the pressure has
been calculated by fitting the parameters a;, ¢;, 4;, w;
as a function of the pressure logarithm. In particular this
expression has been used

n
C= E aja?
Jj=0

where = log (P) and C represents any of the parame-
ters a;, ¢;, 4;, w; of the previous functions or its natural
logarithm. The «a; coefficients that must be used in equa-
tion (52) are reported in Appendix. In this way all the
quantities are expressed as a function of two variables, P
and T'. These functions can be used in the pressure range
1072 + 10? atm. Due to the polynomial expression, the
extrapolation from recommended range is not possible.
On the other hand, the temperature dependence is very
accurate in the temperature range 50—60 000 K. In the fol-
lowing, we present analytical expressions for the gas com-
position (molar fractions), specific entropy, mean molar
mass, specific enthalpy, thermal and electric conductivi-
ties and viscosity. Relative errors of analytical expressions
are always less than 5%. Figure 8 shows the comparison of
specific heat at constant pressure for P = 1072, 102 atm
and the percentage relative errors, always less than 4%.

(52)

Mean molar mass (kg/mol) and gas density (kg/m?)

6
M:C()fzajdj (T (53)
j=1
p R
==—=M 54
P= BT (54)
Specific enthalpy (cal/g)
2 T
H= ZCJ‘TJ + Zajaj (T (55)
j=1 j=1
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% relative error

T [K] < 10°
Fig. 8. Comparison of specific heat at constant pressure for
P = 1072 atm (full line) and P = 10? atm (dashed line). Val-
ues obtained by using the analytical expressions (o, X) given
by equation (56) and correspondent percentage relative errors
have been reported.

Specific heat (cal/g/K)

1 5 11
= ¢;T7+ Y ajo; (T)+ > av, (T (56)
3=0 j=1 j=6
Specific entropy (cal/g/K)
7
S=> a;o;(T)+¢o(T). (57)
j=1
Electric conductivity (S/m)
logo = & (log (T)) + Z ajo; (T (58)
Thermal conductivity (W/K/m)
6
log A = ag + Z a;o; (log (T Z a;7y; (log (T)). (59)
j=1

Viscosity (Kg/m/s)

logn =log & (T

)+ Zajaj

Molar fractions are combinations of sigmoid functions

10
+ Zajaj (T) . (60)
j=6

N
X = max |0, Z a;o; (T)

j=1

(61)

Some of the sigmoids are increasing (coefficient a is posi-
tive) and some others are decreasing (coefficient a is neg-
ative). The sum of the amplitude of the increasing func-
tions are equal to the sum of the amplitudes of decreasing
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functions or

(62)

Zaizo.
%

As a consequence, the amplitude of one of the sigmoids is
the linear combination of the amplitude of the others. This
role has two exceptions: the species that do not disappear
at high temperature (electrons and highly charged atoms)
and the species predominant at low temperature (in par-
ticular Ny and Os), which are the only species which has
a coefficient ¢ different from zero.

5 Conclusions

In the paper chemical compositions, thermodynamic and
transport properties of air plasma have been calculated
in the temperature range 50—60000 K and for pressure
varying from 0.01 to 100 atm. Calculated values have been
fitted by analytical functions and fitting coefficients have
been reported in Appendix.

For the calculation, use is made of the recent compila-
tion of collision integrals obtained by Capitelli et al. [17].
Comparisons of the present data with literature values at
atmospheric pressure show a satisfactory agreement es-
pecially with the recent calculations of Murphy [25]. It
has been shown that some discrepancies are present es-
pecially at high pressure comparing the results obtained
with two different cut-off criteria: a constant cut-off and a
self-consistent cut-off. Moreover electric conductivity and
thermal conductivity depend strongly on the choice of col-
lisions integrals between charged particles. In this paper
the method proposed by Mason, which takes into account
screened Coulomb potential with a Debye length calcu-
lated only from the electron number density, has been
considered and large discrepancies respect to the results
obtained considering Liboff collision integrals have been
observed.
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Appendix A: Fitting coefficients

In this appendix, we report the coefficients (Tabs. 2-27) to obtain analytical expressions of chemical composi-
tions, thermodynamic and transport properties in the temperature range 50-60000 K and in the pressure range

Highlight Paper

1072 = 102 atm.

2

Table 2. Coefficients to calculate molar fraction of No by using xn, (T) = co — Y. ajo; (T).

j=1

(7} (%) a2 [0 %3 Qg
co 0.8 - - - -
ai = Ccop — a2 - - - - -
o1 log c1 8.110148 4.553237e-2 —8.193725e-4  —2.156896e-4 -
log Ay 6.561427 1.422222e-1 —7.476314e-4  —8.715905e-4 -

log a2 —4.037422e-1  —7.147343e-4 4.492235e-4 9.648313e-5 —1.284083e-8
02 log c2 8.812799 5.665883e-2 1.293767e-3 - -
log As 7.016774 1.058804e-1 3.292541e-3 2.267238e-4 -

Table 3. Coefficients to calculate molar fraction of N by using Xng (T) = max [0, > ajo; (T)|.

3

j=1
(o) e %1 (6% s Qg Qs
log a1 —9.746298 4.199007e-1 3.143417e-3 3.882378e-4 - -
o1 log c1 8.884490 5.573065e-2 1.616982e-3 6.738352e-5 - -
log Ay 6.552069 1.058201e-1 3.989777e-3 1.801416e-4 - -
a2 = a3 — ai - - - - - -
o2 log c2 9.203463 7.494796e-2 2.541069e-3 7.257196e-5 6.051419e-6 -
log Az 7.294752 —1.099569e-3  4.040325e-3 2.717526e-3 —5.081078e-5  —3.474609e-5
log (—as) —9.992503 4.689265e-1 1.182887e-3 —1.176687e-4 - -
o3 log cs3 9.449201 6.238298e-2 1.564727e-3 5.575073e-5 - -
log A3 7.762006 1.260807e-1 2.223845e-3  —1.231135e-4 - -

3
Table 4. Coeflicients to calculate molar fraction of N by using xn (7') = max |0,a10m (T) o1 (T) + >_ ajo; (T)].
=2

(7} a1 a2 [0 %3 Qg
a1 8.188731e-1  2.581889%e-3 1.395103e-4 - -
o1 log c1 8.812279 5.474146e-2 1.019131e-3 - -
log Ay 7.051737 1.128378e-1 2.407727e-3 —1.247502e-5 -
Om log cm 8.405373 4.371184e-2 1.893389e-3 1.927737e-4 -
log A 6.923056 1.987863e-1 3.645361e-3 —5.777817e-4 -
a2 = a3 — ai - - - - -

o2 log ca 9.516473  6.520807e-2  1.270979¢-3  —3.857140e-5 —5.540006e-6
log As 7.949412  1.206502e-1  1.785666e-3  —3.344976e-5 -
log (—az)  —3.552214  4.08511le-1 —2.961084e-2 - -
o3 log c3 9.864059 3.659617e-2 7.907898e-3 - -
log As 8.814892 5.421480e-2 1.537056e-3 - -
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4
Table 5. Coefficients to calculate molar fraction of NT by using xx+ (T) = max |0, a10m (T) o1 (T) + 3. ajo; (T)].
j=2

o)) a1 a2 a3 Q4 Qs
log a1 —1.211184 2.634222e-4 2.560470e-3 - - -
o1 log c1 9.494309 5.588021e-2 2.479295e-3 5.228102e-4 5.047984e-5 —1.606423e-6
log Ay 8.228344 2.288911e-1 —7.989931e-4 —1.145501e-3 - -
Om log cm 9.276675 8.451791e-2 —7.509912¢-3 1.762683e-3 —2.856325e-4 3.392616e-5
log Ay, 7.931270 —4.388112e-2 2.643605e-2 —1.501361e-3 —2.178943e-4 2.476492e-5
log a2 —2.230927 2.047906e-2 —2.220684e-3 - - -
o2 log c2 9.511003 8.651691e-2 —5.130145e-5  —2.847046e-4 - -
log As 7.645166 8.574186e-2 2.708947e-4 6.210369e-4 - -
a3 = a4 — a2 — ai - - - - - -
o3 log c3 1.037880e+1 6.497169e-2 3.027193e-3 1.559114e-4 —2.230902e-7 3.440378e-6
log As 8.810742 1.305064e-1 —1.083168e-3 4.025862e-5 1.348428e-4 —2.273123e-5
log (—aa) —1.200529 —3.074481e-2 4.780888e-3 8.341989%¢-4 6.160353e-6 —2.708386e-6
o4 log ca 1.025494e+1 6.494578e-2 1.277401e-3 - - -
log A4 8.187912 1.182600e-1 6.307194e-3 2.948945e-4 1.136590e-6 -
Qe (0%4
log a1 - -
o1 log c1 —8.671283e-7 —5.919943e-8
10g A1 - -
om log ¢ —5.010435e-6 3.875277e-7

3

Table 6. Coefficients to calculate molar fraction of N** by using xn++ (T') = max |0, a1om (T) o1 (T) + Z ajo; (T)|.

j=2
(o) e %1 Qo a3 Q4
log a1 —1.320561 4.613513e-3 1.563146e-3 9.805924e-5 -
o1 log ¢1 1.018105e+1  6.182886e-2 4.542717e-4 1.665348e-4 —1.688929e-5
log Ay 8.328213 7.134338e-2 8.440573e-3 —1.913632e-4 -
Om log ¢m 1.020635e+1  6.787015e-2 2.930559e-3 —2.387278e-5  —1.580874e-5
log Ay, 8.637046 1.730873e-1  —2.312739e-3  —1.253255e-4 6.870714e-5
a2 = a3z — ail - - - - -
o2 log c2 1.071778e+1  6.267958e-2 1.384143e-3 1.803319e-5 -
log Az 8.558877 1.280075e-1 7.408166e-3 —6.068102e-5 —3.499092e-5
log (—as3) —2.441955 1.600937e-2  —1.796504e-2 4.445771e-5 -
o3 log c3 1.081164e+1 6.929471e-2 3.005312¢-3 5.422861e-5 -
log As 9.008121 1.059058e-1 3.835047e-3 —5.778232e-4 -

Table 7. Coefficients to calculate molar fraction of N™*+ by using xy+++ (T) = max [0, a10m (T) o1 (T) — a102 (T)].

Qo a1 Qa2 as

log a1 —1.339800 1.954622e-2  —3.939015e-3  —4.170049e-4
o1 log ¢1 1.070665e+1  6.722548e-2 6.769799e-5 4.111595e-5

log Ay 9.340050 5.929963e-2 1.505109e-3 2.034159e-4
om logecm  1.066404e+1  5.711793e-2 1.063676e-3 —1.137507e-6

log Ay, 8.726521 1.521811e-1 2.430293e-3 —4.716643e-4
o2 log c2 1.105085e+1  5.890335e-2 1.918852¢-3 9.521033e-5

log As 9.258763 1.273121e-1  —6.021997e-4  —2.540618e-4
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Table 8. Coefficients to calculate molar fraction of Nt by using xnx++++ (T) = max |0, a10m (T) o1 (T) + 3 a;o; (T)].
j=2

The European Physical Journal D

(7} a1 a2 Q3 Qg
log a1 —1.849635 —4.491118e-3  —3.702617e-4 - -
o1 log c1 1.100960e+1 7.368509e-2 1.075589%¢-3 - -
log Ay 9.329126 7.704932¢-2 2.666225e-3 - -
Om log ¢m 1.100986e+1 4.882927e-2 3.853047e-4  —1.475967e-6 -
log Am 9.006971 1.074664e-1  —1.472426e-3  —2.722012e-4 -
a2 = a3 — a1 - - - - -
o2 log c2 1.206372e+1  —1.734608e-3 —1.447988e-2  1.590266e-3 -
log As 1.019997e+1  —1.423777e-1  —4.095877e-2  2.180861e-3  2.368183e-4
log (—as) —6.074622e-1  6.073274e-1 9.963043e-2 5.415504e-3 -
o3 log c3 1.280436e+1 —1.896326e-1 2.801196e-2 — —
log As 1.103058e+1  —2.553162e-1 2.330651e-2 - -
2
Table 9. Coefficients to calculate molar fraction of Oz by using xo, (T') =co — Y. a;o; (T)
j=1
Qo e %1 Qo as (o7} Qs
Co 0.2 - - - - -
ayp = Cop — az - - - - - -
o1 log c1 7.851965  —4.971670e-2 —1.438515e-2 —8.639710e-4 - -
log Ay 6.500431 7.318423e-2 —2.704126e-3  —2.824658e-4 - -
log a2 —1.685730  3.728595e-2  —5.172240e-3  2.021941e-4 6.195083e-5  —5.999263e-6
o2 log c2 8.148167 4.575379e-2 1.841872e-4 - - -
log As 6.459154 1.486515e-1 5.919587e-3  —3.159509e-5  —4.048213e-5 -
4
Table 10. Coefficients to calculate molar fraction of O by using Xog (T) = max [0, jzl ajo; (T)|.
(o) a1 Qo a3 (e %]
log a1 —1.373444e+1  6.627381e-1  —1.950471e-2 7.469315e-4 1.358278e-4
o1 log c1 8.794853 4.659480e-2  5.610403e-4 1.044006e-4  —1.835079¢-5
log Ay 7.268996 9.440745e-2  —2.146537e-3  4.167152e-5 3.077941e-5
log a2 —1.419853e+1  4.889623e-1 —6.123742e-3  5.940913e-4 9.783232¢-5
o2 log c2 8.991604 5.142449e-2 1.298498e-3 4.051458e-4 1.170299e-5
log As 7.456563 1.277214e-1  8.479742¢-3 8.341173e-4  —1.597360e-4
a3z = a4 — a2 — ai - - - - -
o3 log c3 9.563817 7.340431e-2 7.915772e-4 —1.592330e-4  —1.027704e-5
log As 7.834428 1.245447e-1  4.949361e-3 3.875066e-5  —2.966365¢e-5
log (—aa) —1.342851e+1  6.025406e-1  —1.482459¢-2 1.461126e-4 1.408990e-4
04 log c4 8.900254 3.563862e-2  1.399785e-3 1.003372e-4  —3.618984e-5
log A4 7.450971 0.288765e-2 —1.491663e-3  7.510663e-4  —9.458429¢-5
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Table 11. Coefficients to calculate molar fraction of O by using Xoj (T) = max [0, > ajo; (T)|.

4

j=1
[67s) (5] (6% a3 Q4
log a1 —2.009128e+1 1.218472 —1.023713e-2  —3.693487e-4 -
o1 log c1 8.151744 5.269669¢-2 1.328087e-3 9.918314e-5 6.931618e-6
log Ay 6.140093 1.051897e-1 2.939827e-3 1.422812e-4 -
a2 = a4 + a3z — a1 - - - - -
o2 log ¢ 8.327753 6.884887e-2 2.843931e-3 1.083879e-4 -
log As 6.644117 1.374513e-1 4.095263e-3 8.402722¢-5 —1.242256e-5
log (—as3) —2.169571e+1 1.231117 1.792651e-3 2.558252¢-4 —1.732401e-4
o3 log c3 8.601320 7.342289%¢-2  —9.411900e-4  —1.339663e-4 3.126379e-5
log As 6.985630 8.256947e-2 9.999196e-3 —2.953396e-5 —1.526330e-4
log (—a4) —2.472870e+1 1.526884 1.203852¢-3 1.430794e-4 -
o4 log ca 9.428115 5.014640e-2  —3.340382e-4 7.998702e-6 -
log Ay 7.530896 1.558330e-1 4.905502e-3 —8.411242e-4 -
as (o7 az
o2 log A; —7.990825e-6  8.075101e-7  2.001120e-7
o3 log (—as3) 8.498995e-6 1.264359e-6 -

4
Table 12. Coefficients to calculate molar fraction of O by using xo (T) = max |0,a10m (T) o1 (T) + > ajo; (T)].
=2

143

(o)) (%1 a2 a3 Q4 Qs

log a1 —1.139281 —1.050647e-2 —1.022007e-3 —4.830320e-5 —3.531305e-6 —2.296630e-7
o1 log c1 8.145639 5.431612e-2 2.023998e-3 1.003745e-4 - -

log Ay 6.576786 1.491330e-1 3.724868e-3 —1.382563e-4 1.947915e-6 1.082756e-6

Om log cm 7.940783 6.741169e-2 —2.087042e-3 3.972481e-4 —3.481686e-5 1.485858e-6
log Ay, 6.664764 4.575484e-2 4.557480e-3 - - -

log (—az) —4.979500 2.665257e-1 1.458327e-2 —2.533456e-3  —3.704428e-4 2.339924e-5
o2 log c2 9.811744 7.436247e-2 —1.239267¢e-4 6.132060e-4 — —
log Az 9.044853 5.997097e-3 4.532508e-4 6.756744e-4 - -
a3 = a4 + a2 — ai - - - - - -
o3 log 3 8.819734  5.805213¢-2  1.501067e-3  2.511693¢-5 - -
log As 6.918048  9.326905¢-2  2.506390e-3  1.395474e-4 - -

log (7a4) —1.615594  —5.157778e-3 —1.550658e-3 —1.264223e-4 2.343404e-5 3.184705e-6
o4 log ca 9.554277 6.746571e-2 8.910292e-4 —4.496226e-5 - -
log A4 8.033301 1.233674e-1 1.651217e-3 —3.811131e-5 — -

Table 13. Coeflicients to calculate molar fraction of O~ by using xo- (T") = max [0, > ajo; (T)]|.

3

j=1
(7} (e5) a2 a3 (%)
log a1 —1.492297e+1  9.064321e-1  —8.724265e-3  —2.165125e-4 1.166368e-4
o1 log c1 8.415326 5.157258e-2 2.024706e-3 1.312425e-4 1.315036e-5
log Ay 6.462668 6.272626e-2  —6.193918e-3 6.376014e-4 2.245471e-4
log a2 —1.175041e+1  7.618857e-1 1.501595e-3 1.781504e-4 9.215991e-6
o2 log c2 9.270258 5.316281e-2 1.482070e-3 —5.476676e-5 —9.733849e-6
log As 7.724023 9.838486e-2 4.215920e-3 —6.990084e-5 —3.230965e-5
a3z = —ai1 — a2 - - - - -
o3 log c3 9.598507 6.569448¢-2  5.303147e-4  —9.613381e-5  —7.330576e-6
log Az 7.809041 1.423877e-1  4.366188e-3  —8.184536e-5 —1.524608e-5
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Table 14. Coefficients to calculate molar fraction of OF by using xo+ (T') = max |0, a10m (T) o1 (T) + 3. ajo; (T)].
j=2

Highlight Paper

(o) e %1 Qo a3 (e %]
log a1 —2.319093 —7.610174e-3  —1.953269e-3  —3.002482e-4  —1.751192e-5
o1 log c1 9.588569 6.997026e-2 9.769379e-4 —6.246775e-5 —4.877947e-6
log Ay 8.044970 1.175891e-1 1.645336e-3 —9.489377e-5  —9.694619e-6
Om log ¢m 9.115221 6.168847e-2 2.270858e-3 1.412631e-4 -
log A 7.651684 1.477558¢-1  —1.967294e-3  —9.075769¢-4 -
a2 = a3z — ail - - - - -
o2 log ¢ 1.020364e+1 6.299762e-2 —1.091887e-3 3.702998e-5 -
log Az 8.680331 1.325526e-1 2.754338e-3 —7.964755e-5 -
log (—as3) —1.436906 2.872384e-1 2.978317e-2 1.769679e-4 —9.414001e-5
o3 log c3 1.027215e+1 4.672465e-2 1.597850e-4 9.311678e-6 -
log As 8.696369 1.339624e-1 1.995427e-3 —3.323281e-5 -

3
Table 15. Coefficients to calculate molar fraction of O1" by using xg++ (T) = max |0, a10m (T) o1 (T) + 3 ajo; (T)|.
j=2

Qo a1 Qa2 as
ai 7.063013e-2  —5.187789e-4  —9.288238e-6 -
o1 log c1 1.029003e+1 4.517420e-2 —1.618224e-5 2.245678e-4
log Ay 8.449025 1.233942e-1 —3.128794e-3  —5.456369e-4
Om 10g Cm 1.029386e+1  8.048612e-2  —4.497818¢-4  3.852087e-5
log Ay, 8.843594 4.195145e-2 1.187095e-2 1.964457e-4
a2 = a3z — ail - - - -
o2 log c2 1.082680e+1 7.388982¢-2 9.267668e-4 -
log As 9.267200 5.532633e-2 2.362320e-3 6.299569e-4
log (—as) —2.991458 —5.757422e-2  —3.835760e-3 -
o3 log c3 1.078471e+1 5.999115e-2 1.044468e-3 —
log As 8.785646 9.165132e-2 9.925663e-4 -
Qy as Q6
o1 log c1 3.130833e-5 —2.423868e-6  —3.903368e-7
log Ay 5.445584e-5 6.520078e-6 -
om log A, —4.989937e-5  —9.711143e-7 -
) log As 1.122230e-5 —2.869166e-6  —4.451869e-7

Table 16. Coefficients to calculate molar fraction of Ot by using xo+++ (T) = max [0, a10m (T) o1 (T) + az02 (T)].

(o)) a1 a2 a3 Q4 as
log a1 —2.760009 3.495500e-3  —5.357864e-3  —2.144466e-4 9.251860e-6 —9.005345e-7
o1 log ¢1 1.074207e+1  5.260080e-2 4.936255e-4 —4.405321e-5 —3.025027e-6  —5.425422e-7
log Ay 8.835975 1.411710e-1 2.773994e-3 —6.211959e-4 3.813517e-6 1.323357e-5

Om log cm 1.077506e+1  6.587529e-2 2.491665e-4 1.077355e-4 - -

log An, 9.367809 3.868631e-2  —7.976461e-4 6.108727e-4 - -

a2 = —aq - - - - - -

o2 loges  1.111558e+1 5.973321e-2  2.038965¢-3  9.054082e-5 - -

log As 9.317808  1.146500e-1 —4.219919e-4 —1.986513e-4 —9.501572¢-6 -

Qe (0%
o1 logA;  —1.119305e-6 —3.062376e-7
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Table 17. Coefficients to calculate molar fraction of O™+ by using xg++++ (T) = max |0, a10m (T) o1 (T) + > a;o; (T)|.

Jj=2
(674} (o5} a2 a3 Qg Qs
log a1 —3.273424  —9.222532¢-3 —2.546540e-3 —6.142466e-4 —6.803461e-5  —1.480622¢-6
o1 log ¢1 1.114079e+1  6.128099e-2  1.305781e-3  —4.745385e-5 —1.294845e-5 —6.416314e-7
log A 9.124558 1.015232¢-1  —1.452067¢-3 —4.363441le-4  —9.737843¢-6  1.643326¢-6
Om 10g ¢m 1.097387e+1  5.385207e-2  3.454294e-5  —9.334055¢-5 - -
log A, 9.008289 5.266326e-2  —2.558320e-4  3.532844e-5 - -
a2 = a3z — a1 - - - - - -
o2 log c2 1.133963e+1 5.445065e-2 —3.976441e-4 1.251159e-4 - -
log As 9.165912 3.362575e-2 1.118630e-3 —3.084012e-4  —7.665827e-5 -
log (—as) —3.227410 —4.108171e-3 —6.841752e-4 —3.928651e-5 - -
o3 log c3 1.473199e+1  —3.158041e-1  —3.070674e-2 6.776443e-3 - -
log As 1.306288e+1  —3.228563e-1  —3.275522e-2 6.750116e-3 - -

3
Table 18. Coefficients to calculate molar fraction of NO by using x~o (T) = max |:O, > ajo; (T)].

j=1
(7} (e5) a2 a3 (%)
log a1 —2.397641  9.644207e-2 - - -
o1 log c1 7.942600 2.917164e-2 6.775381e-4 2.209082e-5 -
log Ay 6.780323 6.029139e-2 4.276063e-4 - -
az = a3z — ai - - - - -
o2 log c2 8.274503 6.655621e-2 2.214534e-3 3.856329¢-5 -
log Az 6.495225 7.930874e-2  —1.952605e-3 —7.384374e-4 —5.231985e-5
log (—as)  —2.923272  1.671984e-1 - - -
o3 log c3 8.364477 7.365241e-2 2.771836e-3 —5.013391e-6  —5.293616e-6
log As 7.549495 9.399569e-2 - - -

4
Table 19. Coefficients to calculate molar fraction of NOT by using xno+ (T) = max [O, > ajo; (7).
j=1

Qo e %1 Qo as (o7} Qs

log a1 —7.135266 4.617651e-2  —7.097386e-4 - - -

o1 log c1 8.740893 4.144123e-2 3.456197e-4 - - -
log Ay 6.996599 6.789593e-2 1.320085e-3 2.143434e-5 6.597691e-6 1.625852e-7

log a2 —8.753925  1.392942e-1 1.317873e-2 - - -

o2 log c2 8.817743 4.865084e-2 7.358462¢-4 - - -

log As 6.260938 9.417073e-2 7.841151e-3 - - -

as = a4 — a2 — ay - - - - - -

o3 log cs3 8.899564 6.228872e-2 1.910295e-3 5.292903e-5 - -

log As 7.246371 1.012940e-1 4.389279e-3 —2.344414e-5 —1.533963e-5 -

log (—au4) —8.772596  1.382471e-1  —1.513718e-3 1.822779e-3 5.774867e-5 -

o4 log c4 9.221935 8.005371e-2 3.728793e-3 —1.235847e-4  —6.058282e-6 -

log A4 7.940040 1.021609e-1 5.411563e-3 1.592304e-4 —7.583651e-5 -
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Table 20. Coefficients to calculate molar fraction of e~ by using x.- (T) = max |0,a10m (T) o1 (T) + 3 ajo; (T)].
j=2

(7)) a1 (6% a3 o4 (671
log a1 —3.932487e-1  7.116035e-4 4.083493e-4 3.307562e-4 2.215248e-5  —4.020145e-6
o1 log c1 9.514823 6.426626e-2 3.538392e-4  —1.093881e-4 - -
log Ay 7.931006 1.174176e-1 —5.369256e-4  —1.640676e-4  2.876393e-5 -
Om log ¢m 6.343867 1.473478 —2.628976e-1  2.653667e-2  —1.170989%-3 -
log A 1.029159e+1 3.502366e-2 —1.043994e-2  —7.498040e-4  1.464646e-4 1.031691e-5
log a2 —1.599518 —3.681243e-2  —1.499672e-2  —4.875898e-3  —9.278204e-5  8.792226e¢-5
02 log c2 1.025313e+1 6.613035¢-2 2.106960e-3 1.249059e-4  —3.254728e-6  —1.073094e-6
log Az 8.461864 1.033435e-1 —6.800325e-3 —2.171111e-3  8.042855e-5 3.126866e-5
log a3 —3.031217 —1.236964e-2  4.999807e-3 4.130827e-4  —5.879976e-5 —5.643378e-6
03 log c3 1.074247e+1 6.026184e-2 6.834881e-4 1.412968e-6 - -
log As 8.457103 1.570495e-1 2.577271e-2 —4.699755e-4  —7.340190e-4  —1.521958e-6
log a4 —3.096101 5.690833e-2 1.063005e-2 8.066239¢-4 - -
o4 log ¢4 1.106632e+1 5.734452e-2 1.326880e-3 4.870977e-5 - -
log A4 9.134358 1.817063e-1 8.463508e-3 - - -
as = ag — a2 — al - - - - - -
o5 log cs 1.009244e+1 5.691765e-2 2.642057e-3 3.297719e-5 - -
log As 9.041428 9.809302e-2 1.899235e-3  —1.329754e-4  —2.357106e-5 -
log (—as) —3.465436e-1  —2.831472e-3  —1.021467e-3  —7.753035e-5 - -
o6 log cs 1.219498e+-2 —3.565001 7.046916e-1 3.062083e-1 —2.940975e-2 -
log As 1.163952e+2 —3.232407 6.981116e-1 2.997466e-1 —2.749064e-2 -
Qe (0%
om log Ap —3.878009e-7 -
log a2 1.273088e-5 -
o2 log ca  —4.149968e-7 —4.918145e-8
log Az 3.548083e-6 1.732832e-7
03 log az  —2.118479e-7  —8.835667e-8
log Az 7.337098e-6  —1.937258e-8
Table 21. Coeflicients to calculate mean molar mass according to (53).
(o)) e %1 Qo a3 (e %]
co 0.028811 - - - -
log a1 —5.452539 —2.762076e-2  —3.327630e-3  —2.453118e-4 —6.332107e-6
o1 logca 8.170734 5.708244e-2 1.293374e-3 - -
log Ay 6.380594 1.046470e-1 8.553860e-4  —1.572857e-4 -
log a2 —4.595514 1.328152e-2 9.294096e-4  —8.243998e-5  —9.490079e-6
o2 log ca 8.805680 5.468057e-2 1.121881e-3 - -
log Az 7.080690 1.142540e-1 6.869247e-4  —2.257365e-4 -
log a3 —4.971377 —1.668833e-2  —2.409638e-3  —2.840529e-4  —2.934495e-5
o3 loges 9.525862 6.639994e-2 7.836529e-4  —2.447910e-4  —2.415297e-5
log A3 7.888211 9.954169e-2  —1.327510e-4  —2.926560e-4  —4.717532¢-5
log a4 —6.720756 7.203127e-2 6.766486e-3  —1.019894e-3  9.196578e-5
o4 logecs 1.055726e+1  8.397717e-3 9.849480e-4 3.539965e-4  —4.236150e-5
log A4 8.707609 3.713173e-2  —1.670186e-2  —5.094908e-4  4.248200e-4
log as —6.218117 —7.145834e-2  6.529894e-4 1.599394e-3 1.981881e-5
o5 logcs 1.020784e+1  2.553473e-2  —3.549988e-3 - -
log As 8.422438 1.125955e-1 —3.204629¢-3  —1.655103e-3  —2.051312e-4
log as —6.611171 8.990124e-2  —5.418532¢-3 - -
o logcs 1.096136e+1  2.887564e-2  —3.621097e-4 - -
log Ae 9.253817 1.341329e-2  —6.004835e-3  1.860800e-3  —1.229602e-4
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Table 22. Coefficients to calculate specific enthalpy according to (55).
() (e 71 a2 asg iy as
c1 2.350912¢-1 —1.120236e-3 —2.508755e-5 - - -
c2 1.542966e-5 6.556647¢e-7 - - - -
log a1 6.587335 —6.112145e-2 —9.108114e-3  —9.569561e-4  —1.128838e-4 —8.757988e-6
o1 log a1 8.164839 5.283021e-2 4.741812¢-4 —1.276598e-4  —9.877950e-6 -
log A1 6.513247 1.040239¢-1 —8.104042e-4  —2.991537e-4  4.348437e-5 6.258153e-6
log as 8.740885 3.050736e-3 1.599171e-3 —2.859059¢-4  —5.371695e-5 -
o2 log c2 8.856133 5.964702¢-2 1.745638¢-3 2.343688e-5 —3.102821e-6 -
log As 6.981907 1.119408e-1 4.185626e-3 —2.499247e-4  —5.209456e-5 -
log a3 1.014496e+1 —1.833015e-2 —4.265166e-3 —8.321612e-4  —6.481810e-5 -
os log cs 9.593196 7.089945¢-2 1.640521e-3 —1.055407e-4 —1.510653e-5 -
log As 7.910995 1.006930e-1 —1.608832¢-3  —2.526731e-4 - -
log a4 1.082665e+1 —4.777223e-2 —4.682547e-3 - - -
os  log ca 1.030572e+1 6.607308e-2 1.512694e-3 —5.009486e-5 —5.192881e-6 1.116840e-6
log Ay 8.320951 7.474585e-2 1.789257e-3 5.273341e-4 3.755570e-5 3.425485e-6
log as 1.145937e+1 5.122940e-4 —8.805300e-3  —1.193042¢-3 - -
o5 log cs 1.076031e+1 6.404003e-2 9.621465e-4 —1.883920e-5 - -
log As 8.846750 1.307197e-1 —2.943134e-4 —6.425060e-4 - -
log as 1.172458e+1 —5.461477e-2 3.413385e-3 7.407737e-4 —1.644220e-4 —1.878043e-5
o6 log cs 1.109244e+1 6.026294e-2 1.125935e-3 —2.170126e-5  —3.141895e-6 —
log As 8.942747 8.687938e-2 1.554323e-2 3.584506e-5 —2.447405e-4 -
log az  —1.011841e+1 —2.295953e+1 —1.220667e+1 —3.504472 —4.373233e-1 1.127311e-2
o7 log ¢y 1.314544e+1 2.079129 9.992304e-1 2.223931e-1 1.963954e-2 —1.622592e-4
log Az —1.743314 —1.807206e+1  —1.393980e+1 —5.232064 —7.607736e-1 8.529592¢-2
Qg (0% Qs Q9
log az 6.598926¢-3 —2.119755e-4  —1.369506e-4 —8.311253e-6
o7 log ez —1.094608e-5 2.304744e-5 1.817656e-6 -
log A7 4.967101e-2 7.733746e-3 5.507513e-4 1.527569¢-5
Table 23. Coeflicients to calculate specific heat according to (56).
(7} a1 a2 [0 %3 Qg
o 4.303513e-3 6.487052¢-2 —6.616517e-3 2.391262¢-4 -
c1 —2.472201e-5 1.865503e-5 —1.298963e-6 - -
log a1~ —3.497916e-1  —2.900058e-1 —3.839544e-2  —6.284876e-3 —4.130292¢-4
o1 log 1 1.008338e+1 8.730410e-2 8.590102¢-3 5.892083e-4 -
log Ay 8.043134 3.294414e-1 4.681080e-2 —1.509745e-3  —4.534410e-4
log as —2.305816 9.286290e-2 —1.095463e-2  —1.929857e¢-3  —2.358095e-4
o2 log c2 7.803107 6.576559¢-2 1.214098e-4 —2.773380e-4 -
log As 6.212416 1.085758e-1 —1.459860e-2  4.297049¢-4 -
log a3 1.885717e+1 1.564732e+1 3.946648 2.094257e-1 —4.423704e-2
o3 log c3 1.174382e+1 1.351866e-1 —5.421755e-2  —1.623227e-2 7.438041e-4
log As 6.596434 —5.025506 —3.238969 —6.901133e-1  —1.855573e-2
log a4 9.844680e-1 —2.553591e-1  —8.898889¢-3 1.493946e-3 6.005988e-5
o4 log ca 1.052223e+1 8.741211e-3 —2.198211e-4 - -
log Ay 9.241400 —6.373646e-2  —7.339952¢-3 5.024652e-4 -
log as 4.664598¢-1 —2.233574e-1  —1.441672e-2 —1.177062¢-3  —6.026800e-5
o5 log cs 8.854075 5.131262e-2 1.507223e-3 3.158892e-4 -
log As 8.973554 1.209818e-2 2.753489¢-3 2.401117e-4 -
Qs 73
log a3  —5.854376e-3 —1.750164e-4
o3 log c3 4.977237e-4 3.456374e-5
log As 8.925939¢-3 7.161553e-4

laded ybijybiH
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(o)) a1 (6% a3 (e 71
log as —8.639771le-1  —2.135237e-1  —1.7355645e-2 —1.885139e-3 —1.226041e-4
Y6 log cs 8.164620 5.272624e-2 5.356645e-4 —4.303413e-5 -
log Ag 6.414342 7.141268e-2 —3.184188e-3  —3.896052e-4 -
log a7 9.596448e-1 —1.130686e-1  —2.461674e-3 4.743607e-5 -
Y7 log c7 8.857074 5.974192e-2 1.621499e-3 2.811880e-5 -
log Ar 7.031326 9.966653e-2 2.637695¢-3 —3.740228e-5 -
log as 1.431534 —1.255579%-1 —5.407784e-3  —4.894608e-4 -
Y8 log cs 9.598608 7.030841e-2 9.720862e-4 —8.467979e-5 -
log As 7.915774 9.011657e-2 —7.629395e-4  —1.579088e-4 -
log ay 1.658985 —1.098660e-1  —7.382403e-3 —1.597338e-3  —1.259823e-4
Y9 log c9 1.030698e+1 6.396773e-2 1.387554e-3 5.277379%e-5 -
log Ag 8.306511 8.714253e-2 6.812322¢-4 - -
log a1 1.638978 —1.238859¢e-1 —3.036868e-3 —1.130285e-3 —1.070291e-4
Y10 log cio 1.076627e+1 6.602355e-2 1.098331e-3 —2.395208e-5 -
log Aio 8.764870 1.276501e-1 —5.08368%¢-4  —7.452322e-4 2.885332e-5
log a11 1.933029 —1.248750e-1  —1.646256e-2 5.253210e-4 3.143929e-4
Y11 log cin 1.109308e+1 5.876202e-2 1.243864e-3 3.958414e-5 -
log A1 8.959570 1.014329e-1 1.073510e-2 —1.155143e-3  —2.731432¢-4

Table 24. Coefficients to calculate specific entropy according to (57).

(7)) (6% (6% a3
©o ao 7.247773e-1  —5.579293e-2 1.246960e-3 -
log wo —1.949369 4.114017e-2 —1.494867e-4 -
a1 2.181324e-1  —2.219875e-2  —3.107110e-4 -
o1 loga 8.148014 5.310698e-2 1.031964e-3 -
log Ay 6.487571 1.023051e-1 2.174761e-3 -
az 9.599015e-1  —5.505086e-2 1.666018e-5 -
o2 logco 8.839993 5.776858e-2 1.370456e-3 -
log Az 7.037019 1.068246e-1 2.382441e-3 -
log as 6.970847e-1  —6.594736e-2 —2.375941e-3  —6.719048e-5
o3 logcs 9.574258 6.744128e-2 1.024908e-3 —4.207616e-5
log A3 8.030117 1.278105e-1 2.875819e-3 5.995551e-5
log a4 7.418974e-1  —6.340965e-2  —1.805794e-3  —5.053043e-5
o4 loges  1.029506e+1 6.492224e-2 1.056643e-3 —1.643501e-5
log Ay 8.459989 1.137276e-1 3.515754e-3 -
log as 7.657208e-1  —5.775822e-2  —7.902876e-4 -
o5 logecs  1.073845e+1 6.189030e-2 1.130363e-3 -
log As 8.822908 1.163591e-1 3.457547e-3 -
ae 2.767445 —1.126949e-1 2.483520e-3 -
o6 logce 1.108196e+1 6.043375e-2 1.256963e-3 -
log As 9.251052 1.085228e-1 1.802991e-3 -
log a7 1.503593 6.710278e-2 1.417762e-3 -
o7 loger  1.188475e+1 8.409849e-2 1.321048e-3 -
log A7 1.082135e+1 1.048287e-1 —5.310563e-3 -
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Table 25. Coefficients to calculate electric conductivity according to (58).

laded ybijybiH

(o)) a1 Qo a3 (e %]
log ao 1.635045 4.450390e-2 —5.928863¢-4 - -
&o log co 5.748398 6.411299e-2 — — —
log Ao 1.786355 —1.212690e-2 —2.375673e-4 - -
log wo 1.419925 —3.875497e-2 - - -
log a1 4.493934e-2  —9.063708¢-3  —2.489500e-3 - -
o1 log c1 8.930803 5.718843e-2 1.093759¢-3 - -
log Ay 7.014976 7.625175e-2 3.011941e-4 - -
az 1.593153 4.137850e-2 1.430491e-2 —4.403957e-7 -
o2 log c2 8.576847 1.004174e-1 7.406762¢-3 —1.095186e-3 -
log As 9.113182 —8.202725e-2  6.299430e-3 9.099828e-4 -
—as 2.627897e-1 2.917558e-3 3.036205e-3 —1.926651e-4  —2.917018e-5
o3 log c3 1.023493e+1 6.651575e-2 1.090308e-3 —6.576415e-5  4.715318e-7
log As 8.039563 1.435966e-1 8.862611e-3 —3.478227e-4  —3.614711e-5
—aq 1.707216e-1 2.035164e-2 1.809127e-3 —9.630175e-5 1.781249e-5
o4 log c4 1.072380e+1 5.671452e-2 1.468210e-4 2.608196e-5 6.511719e-6
log A4 8.556977 2.227207e-1 —2.773160e-3  —1.684219e-3 1.878188e-4
—as 2.480007e-1 2.217818e-2 9.094614e-4 - -
o5 log ¢s 1.106431e+1 5.578774e-2 6.639655e-4 - -
log As 9.309043 1.366510e-1 —2.599317e-3 - -
ae 3.636707 —1.436268e-1  —2.934926e¢-3 - -
o6 log cs 1.023203e+1 8.703300e-2 5.007602e-3 - -
log As 1.130562e+1  —2.184155e-2 —1.865543e-4 - -
a7 = a3z +aq + as+
—a1 — a2 — Qe B - B B B
o7 log c¢7 2.946755e+1 —4.289010 —3.224136e-1  9.371814e-2 -
log Az 2.430324e+1 —2.653523 —3.309222¢-1  4.769061e-2 -
Table 26. Coefficients to calculate thermal conductivity according to (59).
ap (051 Q2 a3
ao —1.283401e+1 - - -
ai 1.991839%e+1 - - -
01 C1 6.622230 - - -
Ay 1.184624e+1 - - -
log as 7.133981e-1 —2.282818e-2  5.491632¢-4 -
o2 log c2 2.080280 7.242844e-3 1.959358e-4 -
log As —1.421111 7.326017e-2 1.685275e-3 -
log (—as3) 8.309337e-1 —2.699607e-3  2.836175e-3 -
o3 log c3 2.114417 6.588084¢-3 1.041527e-4 -
log As —1.873926 7.669056¢-2 4.311158e-3 -
log a4 5.566144e-1 1.402546e-1 —4.355200e-3  1.422302e-4
o4 log ¢4 2.275814 2.789634e-3 1.613876e-4 -
log Ay —1.078759 1.962265e-2 —8.795026e-3  5.277830e-4
log as —1.893687 3.628971e-2 9.796743e-3 -
o5 log ¢s 2.361178 6.072448¢-3 —1.995121e-5 -
log As —1.820338 1.075866e-1 - -
log as 1.153927 —1.647523e-2  —2.502041e-3 -
o6 log cs 2.467469 5.822255e-3 - -
log As —2.830928¢-2  —2.218935e-2  —2.718760e-3 -
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[67s) a1 (6%) a3
log az  —1.700917e+2 —2.131620e+1  —3.099200 -
T 2.061427 1.117607e-3  —3.916231e-4 -
log A7 —3.200998¢+1  —3.353576  —5.634466¢-1 -
log (—as) —1.456072e-1  —1.437036e-1  —1.480764e-3 -
vs  log cs 2.205458 6.659429e-3  1.324918e-4 -
log As —1.819779 3.825355e-3  1.202891e-3 -
log as 1.055279 —2.677491e-2  2.446759¢-3 -
v log co 2.183883 5.938113e-3  1.877191e-4  4.341127e-6
log Ao —9.494270e-1  3.609984e-2  1.528015e-3  —9.686251e-5
log a0 2.885339e-1  —7.133722e-2  2.612269e-4  2.585150e-4
vio  log c1o 2.255570 5.826924e-3  —5.486194e-5  —1.143664e-5
log A1o —1.374699 2.577156e-2  —1.763376¢-3 -
Table 27. Coeflicients to calculate the viscosity according to (60).
@0 (o7 a1 Q2
g0 —2:490318e-3 log az  —9.146259  9.214388¢-2 —7.5325260-3
%o 20 ;5 1;’5857272;;52 o2 log e 8.758933 5.609203¢-2  7.113878e-4
w(‘: o log Ay 7.621521 6.802267e-2  —4.173943¢-3
log a3 —1.077843c+1 8.0101830-2  5.530383¢-3
o1 2.658346e-3 o3 logcs 8.183393 5.531418¢-2  1.161696e-3
a1 211 ;%;7%8122&24 log As 6.544301 1.395158¢-1  1.269937e-3
@0 (e (D) a3 Oy Qs
log as  —9.136467  4.321416e-2 —1.415683c-2 —9.580284c-4  2.418933c-4  5.834458¢-6
o1 logecs 9.196899 6.227176e-2  1.047858¢-3  —1.062417c-4  —1.844923¢-6 -
log Ay 7.345945 9.087033¢-2  —2.859605¢-3 —1.787083c-4  1.598906¢-4 -
log as  —1.924773e-2 —1.92903le-1 —7.597965e-2  1.232504e-3  2.797944e-4 -
o5 logcs  1.054992e+1  6.447025¢-2  —3.834145e-4  —3.204639¢-5 —3.605812c-6 -
log A5 8.500778 7.811525¢-2  4.703012e-3  —1.26220de-4  —1.791684e-5 -
(o)) a1 a2 a3 Q4 as
—as 3551038  —3.85285le-1 —1.608205e-2  7.712558¢-4  1.558067e-4 -
o6 logce 9.648995 6.284331e-2  8.307533e-4  —5.453268e-6 - -
log As 8.298063 8.885346e-2  —2.901675e-3  —4.450595¢-4 - -
log (—a7)  2.202713  —5.805578¢-3 —8.393797e-3  —1.542107e-4  —2.1493366-5 —3.8769600-7
or  loger  1.020898e+1  6.646081e-2  9.291080e-4  —2.151764e-5 - -
log A7 9.012095 9.149373e-2  —3.140624e-3  —3.285520e-6 - -
log (—as) —9.551600e-1 —1.743228e-1 —2.627017e-3  2.020135¢-3  1.148529¢4 -
os  loges  1.077964e+1  6.865954e-2  1.085963e-3  —3.640453e-5 - -
log As 8.301383 3.547869¢-2  3.053608¢-3  1.705129¢-3  4.357310e-5 -
log (—as) —4.892131e-1  3.979950e-2  2.397782e-3  —2.138908e-4  1.140375e-5 -
oo logco  1.108799e+1  5.677599e-2  4.945738e-4  —2.418338e-5 - -
log Ao 9.032754 1.718233e-1  —1.352010e-3  —2.482520e-4  1.256822¢-4 -
10 1134500  —5.153304e-2  6.888543¢-3 - - -
o0 logecio  1.144639e+1  6.234266e-2  3.785377c-3 - - -
Ao 2.879605e+4  2.066908e+3  1.929331e+2  —6.65137de+1  —7.803606 -




